

Data Sheet

Description

The LDHxxxCxWA is four-bar horizontal linear diode laser array providing up to 100W/bar CW and generating output powers up to 400W. The CW diode laser array employs macro-channels and enables water-cooling. The diode laser array is designed to provide the highest reliability and efficiency in pumping, industrial and medical applications.

Features

- 808nm/915nm/940nm/980nm/1064nm Macro-Channel Water-Cooled Horizontal Linear Array
- 4 bars (Up to 100W CW/bar)
- High output power: Up to 400W CW
- Spectral width: <5 nm
- High reliability
- High efficiency

Applications

- Pumping
- Industrial
- Medical

Product Overview

The following table lists the available part numbers, as well as the total output power, output power per bar, number of bars, and cooling method of each of the part numbers.

Part Number	Total Output Power	Output Power per Bar	Number of Bars	Cooling Method	
LDH808C160WA	160W	40W	4	Macrochannel Water-Cooled	
LDH808C240WA	240W	60W	4	Macrochannel Water-Cooled	
LDH808C320WA	320W	80W	4	Macrochannel Water-Cooled	
LDH808C400WA	400W	100W	4	Macrochannel Water-Cooled	
LDH915C160WA	160W	40W	4	Macrochannel Water-Cooled	
LDH915C240WA	240W	60W	4	Macrochannel Water-Cooled	
LDH915C320WA	320W	80W	4	Macrochannel Water-Cooled	
LDH915C400WA	400W	100W	4	Macrochannel Water-Cooled	
LDH940C160WA	160W	40W	4	Macrochannel Water-Cooled	
LDH940C240WA	240W	60W	4	Macrochannel Water-Cooled	
LDH940C320WA	320W	80W	4	Macrochannel Water-Cooled	
LDH940C400WA	400W	100W	4	Macrochannel Water-Cooled	
LDH980C160WA	160W	40W	4	Macrochannel Water-Cooled	
LDH980C240WA	240W	60W	4	Macrochannel Water-Cooled	
LDH980C320WA	320W	80W	4	Macrochannel Water-Cooled	
LDH980C400WA	400W	100W	4	Macrochannel Water-Cooled	
LDH1064C160WA	160W	40W	4	Macrochannel Water-Cooled	

Specifications (T_c = 25°C)

Parameter	Symbol	Value				Unit
Center wavelength	λ _c	808/9xx/1064	808/9xx	808/9xx	808/9xx	nm
Operation mode		CW				
Output power	Po	160	240	320	400	W
Output power/bar	P₀/bar	40	60	80	100	W
Bar quantity	4					
Spectral width	Δλ	λ <5				
Wavelength Temperature coefficient	0.28					nm/ °C
Fast axis divergence	θ	<39				
Slow axis divergence	θι	<10				
Electrical Characteristics						
Parameter	Symbol	Value				Unit
Threshold current	Ith	<7	<15	<25	<25	A
Operating current	lop	<40	<70	<95	<110	A
Operating voltage/bar	Vop	<2.0	<2.0	<2.0	<2.0	V
Thermal Characteristics						
Parameter	Symbol	Value			Unit	
Operating temperature	Top	15 to 35				
Storage temperature	T _{sta}	T _{stg} -10 to +60				

Mechanical Outline (unit: mm)

Notes

- Specifications are subject to change without notice. Ensure that you have the latest specification by contacting us prior to purchase or use of the product.
- Please make sure that the laser diode is operated under the temperature between 15 °C and 35 °C, as high temperature will increase threshold current, decrease exchange rate and accelerate the aging.
- Please take measures to avoid condensation, which will cause aging of laser diode.
- Take precautions to avoid electrostatic discharge and/or momentary power spikes. A change in the characteristics of the laser or premature failure may result.
- Observing visible or invisible laser beams with human eye directly, or indirectly, can cause permanent damage. Do not look directly into the laser output port.