

LD808A500C15

808nm 500mW 50°C CW Laser Diode in Ø5.6mm TO-18 Can Package

Description

The Lasermate LD808A500C15 is an 808nm, 500mW laser diode in a Ø5.6mm, TO-can package and with operating temperature of 50°C. The laser diode is suitable as compact light source for many applications.

Features

• 808nm Infrared laser diode

Optical output power: 500mW CWOperating temperature: +50°C

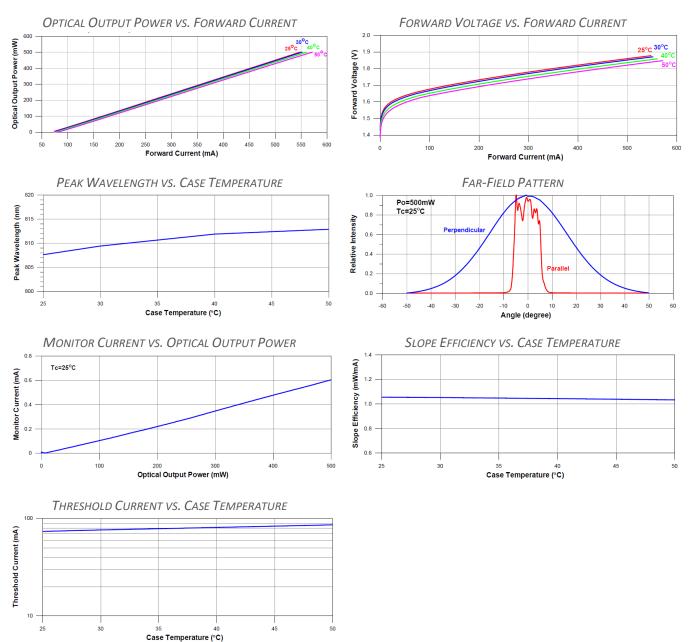
High reliabilityHigher power

• Package: TO-18, Ø5.6mm

Absolute Maximum Ratings

Parameter	Symbol	RATING	Unit
Optical output power	Po	500	mW
Reverse voltage (LD)	V_{RL}	2	V
Operating temperature	T _{opr}	-10 to +50	°C
Storage temperature	T _{stg}	-40 to +85	°C

Electrical and Optical Characteristics (T_C = 25 °C)


PARAMETER	Symbol	MIN.	TYP.	Max.	Unit	CONDITIONS
Lasing wavelength	λ	803	808	811	nm	P ₀ = 0.5W
Threshold current	I _{th}	-	70	100	mA	P ₀ = 0.5W
Operating current	I _{op}	-	540	590	mA	P ₀ = 0.5W
Operating voltage	V _{op}	-	1.9	1.95	V	P ₀ = 0.5W
Differential efficiency	η	0.8	1.1	-	mW/mA	$\frac{375\text{mW} - 125\text{mW}}{I_{375\text{mW}} - I_{125\text{mW}}}$
Monitor current	I _m	-	0.6	2.5	mA	$P_0 = 0.5W$
Parallel divergence angle	Θ//	-	10	-	deg	P ₀ = 0.5W
Perpendicular divergence angle	Θι	-	31	-	deg	P ₀ = 0.5W

^{*} $\Theta_{//}$ and Θ_{\perp} are defined as the angle within which the intensity is 50% of the peak value.

Rev.01


Typical Characteristics

Rev.01

Mechanical Outline (unit: mm)

Additional Notes

- Do not operate the device above maximum ratings. Doing so may cause unexpected and permanent damage to the device.
- Take precautions to avoid electrostatic discharge and/or momentary power spikes. A change in the characteristics of the laser or premature failure may result.
- Proper heat sinking of the device assures stability and lifetime. Always ensure that maximum operating temperatures are not exceeded.
- Observing visible or invisible laser beams with human eye directly, or indirectly, can cause permanent damage. Use a camera to observe the laser.
- No laser device should be used in any application or situation where life or property is at risk in the event of device failure.
- Specifications are subject to change without notice. Ensure that you have the latest specification by contacting us prior to purchase or use of the product.