

VCC-85A8H 850nm 8mW VCSEL Chip

Description

The Lasermate VCC-85A8H is an 850nm wavelength, 8mW output power, Vertical Cavity Surface Emitting Laser (VCSEL) chip designed for use in sensing applications.

Features

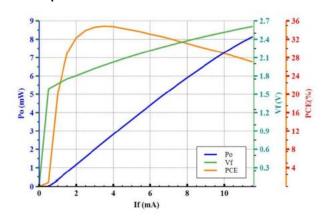
- 850nm single emitter VCSEL chip
- Single longitudinal mode
- Power Conversion Efficiency (PCE): 31%
- Typical 8mW output power at 11.2mA
- Chip size: 204um x 228um
- Chip thickness: 150um

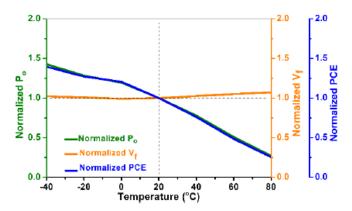
Applications

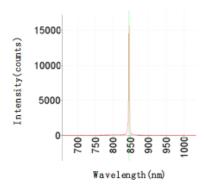
- Proximity sensor
- Consumer electronics
- Active optical cables
- Medical application
- Range finder sensor
- Modulation bandwidth >3GHz

Specifications

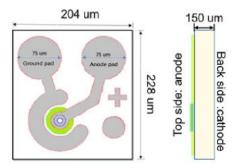
Absolute Maximum Ratings				
Parameters	Symbol	Rating	Unit	Conditions
Case Operating Temperature	Тор	-25 to 60	°C	
Storage Temperature	Tstg	-40 to 85	°C	
Reflow Soldering Temperature	Tsol	320	°C	10 seconds
Reverse Voltage	Vr	5	V	
Maximum Continuous Current	Imax	20	mA	
ESD Exposure (Human Body) Model	ESD	2K	V	


Electro-Optical Characteristics (Top=25°C, CW mode)							
Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Optical Output Power	Po	-	8	10	mW	I _F =11.2mA	
Threshold Current	I _{th}	-	0.5	-	mA		
Power Conversion Efficiency	PCE	-	27.5	-	%	I _F =11.2mA	
Slope Efficiency	η	-	0.6	-	mW/mA	Po=8mW	
Peak Wavelength	λp	840	850	860	nm	I _F =11.2mA	
Forward Voltage	VF	-	2.5	2.7	V	I _F =11.2mA	
Series Resistance	Rs	-	60	-	Ohm	I _F =11.2mA	
Wavelength Temperature Drift	Δλρ/ ΔΤ	-	0.07	-	nm/°C	I _F =11.2mA	
Beam Divergence	FWHM _B	-	19	-	deg		
Emission Area			70x70		um ²		
Number of Emission Aperture		-	1	-			


Note: Electro-optical characteristic with a package or diffuser would require further evaluation. Values are based on limited sample size and estimated values.


Typical Characteristics

LIV Graph



Typical Spectral Width

Outline Diagram (unit: um)

Additional Notes

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions above those indicated in the operations section for expanded periods of time may affect reliability.
- In its maximum rating diode laser operation could damage its performance or cause potential safety hazard such as equipment failure.
- Electrostatic discharge is the main reason for laser fault of the diode. Take effective precautions against ESD. When dealing with laser diodes, use wrist strap, grounding work surface and strict antistatic technology.
- The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.
- Specifications are subject to change without notice.