

VCC-80A3WH 808nm 3000mW VCSEL Chip

Description

The Lasermate VCC-80A3WH is an 808nm wavelength, 3000mW output power, single longitudinal mode, Vertical Cavity Surface Emitting Laser (VCSEL) chip designed for use in 3D sensors, lidars, IR illumination, medical, solid-state pump source.

Features

- 808nm multi-emitter VCSEL chip
- Number of emitters: 306
- High Power Conversion Efficiency (PCE): 43%
- Low threshold current
- Typical 3W output power at 3.2A
- Chip size: 854um x 904um; Chip thickness: 100um

Applications

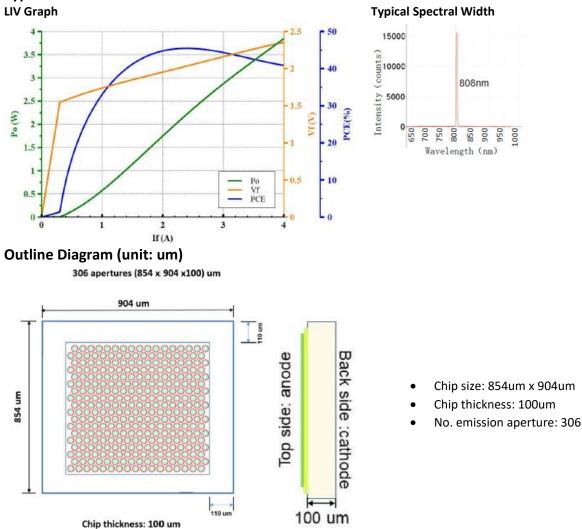
- 3D sensors
- Lidars
- IR illuminations
- Medical application
- Solid-state pump source
- Sensing i.e. Proximity

Specifications

Absolute Maximum Ratings								
Parameters	Symbol	Rating	Unit	Conditions				
Case Operating Temperature	Тор	-40 to 85	°C					
Storage Temperature	Tstg	-40 to 105	°C					
Reflow Soldering Temperature	Tsol	320	°C	10 seconds				
Reverse Voltage	Vr	4	V					
Maximum Continuous Current	Imax	6	Α					
ESD Exposure (Human Body) Model	ESD	2k-4k (Class 2)	V					
ESD Exposure (Machine) Model	ESD	200-400 (Class B)	V					

Electro-Optical Characteristics (Top=25°C, Pulse width 0.1ms, duty cycle 1%)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Optical Output Power	Po	-	3	-	W	I _F =3.2A
Forward Current	IF	-	3.2	-	А	
Threshold Current	Ith	-	0.6	-	А	
Forward Voltage	VF	-	2.2	-	V	I⊧=3.2A
Power Conversion Efficiency	PCE	-	43	-	%	I⊧=3.2A
Slope Efficiency	η	-	1.19	-	W/A	Po=3W
Peak Wavelength	λρ	800	808	816	nm	I _F =3.2A
Differential Resistance	R	-	0.2	-	Ohm	I _F =3.2A
Wavelength Temperature Drift	Δλρ/ΔΤ	-	-	0.07	nm/°C	I _F =3.2A
Beam Angle	FWHM _B	-	20	-	deg	
	(1/e^2)	-	25	-		
Emission Area			684x634		um ²	
Number of Emission Aperture		-	306	-		
Soldering Temperature		-	-	320	°C	10 seconds


Notes:

1. Electro-optical characteristic with a package or diffuser would require further evaluation. Values are based on limited sample size and estimated values.

- 2. Forward Voltage (V_F) measurement allowance is +/-0.1V.
- 3. Peak Wavelength (λ_P) measurement allowance is +/-1.5nm.
- 4. Others measurement allowance is +/-10%.

Lasermate Group, Inc. – The Friend of Lasers

Typical Characteristics

Additional Notes

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions above those indicated in the operations section for expanded periods of time may affect reliability.
- In its maximum rating diode laser operation could damage its performance or cause potential safety hazard such as equipment failure.
- Electrostatic discharge is the main reason for laser fault of the diode. Take effective precautions against ESD. When dealing with laser diodes, use wrist strap, grounding work surface and strict antistatic technology.
- The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESDinduced damage and/or degradation to equipment, take normal ESD precautions when handling this product.
- Specifications are subject to change without notice.

Lasermate Group, Inc. - The Friend of Lasers

Tel: (909) 718-0999 | Fax: (909) 718-0998 | sales@lasermate.com | www.lasermate.com