

Data Sheet

Rev 01.0123

660nm 2mW Pulsed VCSEL Diode

VCx-660P2A

Description

The Lasermate VCx-660P2A is a 660nm wavelength, 2mW output power, pulsed operating mode, Vertical Cavity Surface Emitting Laser (VCSEL) diode. Available in different package types, the VCSEL features low wavelength drift, narrow linewidth, and easy collimation. Ideal for sensing i.e. proximity, consumer electronics, pulse oximetry, and medical applications.

Features

- 660nm Red VCSEL Diode
- Output power: 2mW
- Low wavelength drift
- Oxide isolation technology
- Narrow linewidth
- Easy to collimate

Applications

- Sensing i.e. Proximity
- Consumer electronics
- Pulse oximetry
- Medical application

Product Overview

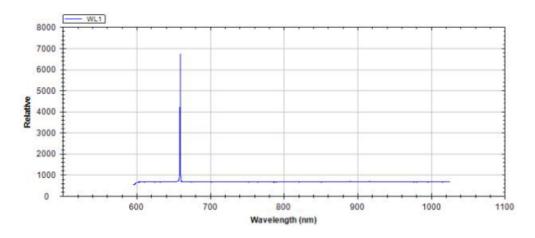
The following table lists the available part numbers, as well as the package type of each of the part numbers.

Part Number	Package
VC20A-660P2A	2016 Package, Substrate AIN
VC20C-660P2A	2016 Package, Substrate CuAg
VC35A-660P2A	3535 Package, Substrate AIN
VCT5-660P2A	TO56 Package, Substrate NiFe
VCT-660P2A	TO46 Package, Substrate NiFe

Specifications

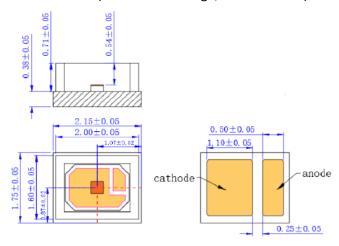
Absolute Maximum Ratings								
Parameters	Symbol	Rating	Unit	Conditions				
Case Operating Temperature	Тор	-25 to 70	°C					
Storage Temperature	Tstg -40 to 85 °c		°C					
Reflow Soldering Temperature	Tsol	260	°C	10 seconds				
Reverse Voltage	Vr	4	V					
Maximum Pulse Current	Imax	12	mA					
ESD Exposure (Human Body) Model	ESD	2K-4K (Class 2)	V					
ESD Exposure (Machine) Model	ESD	200-400 (Class B)	V					

Notes:

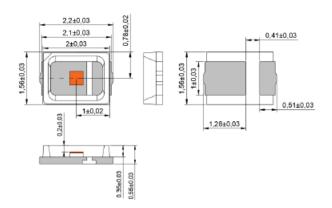

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress
 rating only and functional operation of the device at these or other conditions above those indicated in the operations section for
 expanded periods of time may affect reliability.
- In its maximum rating diode laser operation could damage its performance or cause potential safety hazard such as equipment failure.
- Electrostatic discharge is the main reason for laser fault of the diode. Take effective precautions against ESD. When dealing with laser diodes, use wrist strap, grounding work surface and strict antistatic technology.

Electro-Optical Characteristics (T _{op} =25°C, 0.1ms pulse width, 1% duty cycle)								
Parameters		Symbol	Min.	Тур.	Max.	Unit	Conditions	
Optical Output Power		Po	-	2	-	mW	I _F =10mA	
Threshold Curr	ent	I _{th}	-	3.2	-	mA		
Forward Currer	nt	IF	-	10	-	mA		
Power Convers	ion Efficiency	PCE	-	12	-	%		
Slope Efficiency		η	-	0.35	-	mW/mA		
Peak Wavelength		λ _P	655	660	665	nm	Po=2mW	
Forward Voltage		Vf	-	2.5	-	V	I _F =10mA	
Emission Diamo	eter		-	ф22		um		
Beam Angle	(1/e^2)	θ	-	20	-	deg	I _F =10mA	
Wavelength Temperature Drift		Δλρ/ ΔΤ	-	0.045	-	nm/°C	I _F =10mA	
Soldering Temperature		Tsol			260	°C	10 seconds, AIN, FeNi Alloy	
					180	°C	10 seconds, CuAg	
Substrate		AlN, CuAg, NiFe						

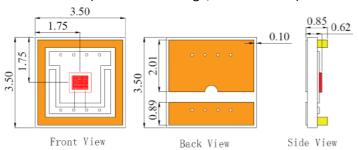
Note: Electro-optical characteristic with a package or diffuser would require further evaluation. Values are based on limited sample size and estimated values.

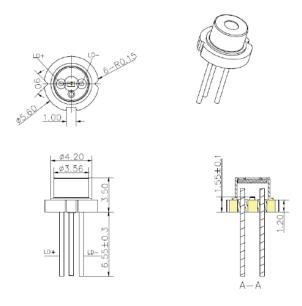

Typical Characteristics

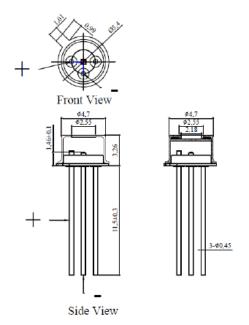
Spectral Wavelength

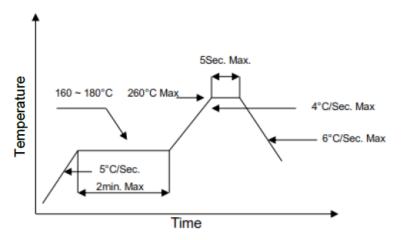


Outline Dimensions (unit: mm)


VC20A-660P2A (2016 SMD Package, Substrate AIN)


VC20C-660P2A (2016 SMD Package, Substrate CuAg)


VC35A-660P2A (3535 SMD Package, Substrate AIN)


VCT5-660P2A (TO-56 Package, Substrate NiFe)

VCT-660P2A (TO-46 Package, Substrate NiFe)

SMT Reflow Soldering Curve

Note: Reflow soldering can be operated only one time. During the temperature ramp-up, no forces may be exerted on the LD which would deform or damage them. After soldering is completed, please do not process until the product temperature ramps down to room temperature.

Additional Notes

- 1. Please use solder paste to cure the laser diode.
- 2. Please make sure that the heat of VCSEL diode has been completely conducted to metal shell to avoid affecting the optical power output.
- 3. This VCSEL diode can be only used in constant voltage and current.
- 4. Please do not aim the laser at people or animals.
- 5. You may observe the laser spot through an image monitoring equipment.
- 6. Please do not touch VCSEL diode surface by naked hands or squeeze the sealant on VCSEL diode surface. It may cause wrong optical angle and distorted laser spot, and even damage the VCSEL diode.
- 7. Please use ceramic suction nozzle to absorb the VCSEL diode, so as to avoid VCSEL diode sticking to the nozzle.
- 8. Please add a 0.02s blowing action after locating the laser diode to aluminum substrate.
- 9. Specifications are subject to change without notice.

Lasermate Group, Inc. 19608 Camino De Rosa Walnut, CA 91789 USA Tel: (909)718-0999 Fax: (909)718-0998 sales@lasermate.com www.lasermate.com