

Data Sheet

Rev 01.1220

1.25Gbps 1550nm SMF 30km SFP Optical Transceiver with Duplex LC Connector

CS15D-24F-3S-Tx-LD

DESCRIPTION

The CS15D-24F-3S-Tx-LD duplex SFP (Small Form Pluggable) optical transceivers are high performance, cost effective optical transceiver modules for serial optical data communications application specified for a data rate of 1.25Gb/s. The SFP transceiver module provides 30km transmission distance over single-mode fiber at nominal wavelength of 1550nm. The optical transceiver is RoHS compliant.

FEATURES

- RoHS compliant
- Compliant with IEEE802.3z Gigabit Ethernet
- Compliant with SFF8472 diagnostic monitoring interface
- Compliant with Fiber Channel 100-SM-LL-L standard
- Hot pluggable Industry standard small form pluggable (SFP) package
- Single power supply 3.3V
- Duplex LC connector
- Differential LVPECL inputs and outputs
- TTL signal detect indicator
- Class 1 laser product compliant with EN 60825-1
- Input/Output: AC/AC
- Up to 30km over single mode fiber

APPLICATIONS

1000Base-LX

PRODUCT OVERVIEW

PART NUMBER	OPERATING TEMPERATURE
CS15D-24F-3S-TC-LD	0°C to 70°C
CS15D-24F-3S-TI-LD	-40°C to 85°C

DIAGNOSTICS

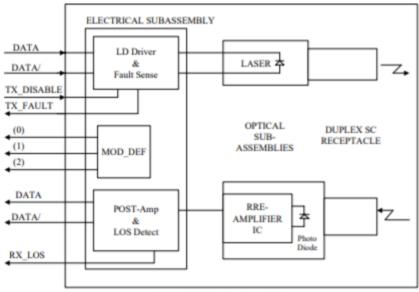
PARAMETER	RANGE	ACCURACY	UNIT	CALIBRATION	
Temperature	-40 to 95	±3	°C	External	
Voltage	0 to VCC	±0.1	V		
Bias Current	0 to 120	±5	mA		
TX Power	-12 to +0	±3 dB	dBm		
RX Power	-21 to -3	±3 dB	dBm		

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT
Storage Temperature	Ts	-40	85	°C
Supply Voltage	Vcc	-0.5	4.0	V
Input Voltage	Vin	-0.5	Vcc	V
Output Current	lo	-	50	mA
Operating Current	I _{OP}	-	400	mA

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTES
Case Operating Temperature	T _C	0	70	°C	CS15D-24F-3S-TC-LD
		-40	85		CS15D-24F-3S-TI-LD
Supply Voltage	Vcc	3.1	3.5	V	
Supply Current	I _{TX} + I _{RX}	-	300	mA	


TRANSMITTER ELECTRO-OPTICAL CHARACTERISTICS (V_{CC} = 3.1V to 3.5V, T_C = 0°C to 70°C, -40°C to 85°C)

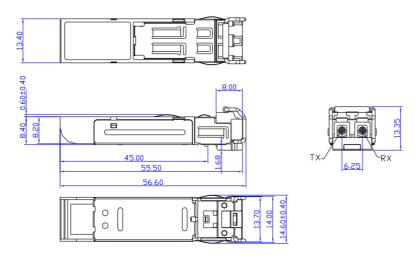
PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTES
Output Optical Power 9/125um fiber	Pout	-9	-	-3	dBm	Average
Extinction Ratio	ER	9	-	-	dB	
Center Wavelength	λc	1530	1550	1570	nm	
Spectral Width (-20dB)	Δλ	-	-	1	nm	
Relative Intensity Noise	RIN	-	-	-120	dB/Hz	
Rise/Fall Time (20~80%)	T _{r,f}	-	-	260	ps	
Side Mode Suppression Ratio	SMSR	30	-	-	dB	
Total Jitter	TJ	-	-	227	ps	
Output Eye	Compliant with IEEE802.3z					
Max. P _{out} TX-DISABLE Asserted	P _{OFF}	-	-	-45	dBm	
Differential Input Voltage	V _{DIFF}	0.4	-	2.0	V	

RECEIVER ELECTRO-OPTICAL CHARACTERISTICS (Vcc = 3.1V to 3.5V, Tc = 0°C to 70°C, -40°C to 85°C)

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTES
Optical Input Power-Maximum	P _{IN}	-1	-	-	dBm	BER<10 ⁻¹²
Optical Input Power-Minimum (Sensitivity)	P _{IN}	-	-26	-21	dBm	BER<10 ⁻¹²
Operating Center Wavelength	λς	1260	-	1610	nm	
Optical Return Loss	ORL	12	-	-	dB	
Signal Detect-Asserted	P _A	-	-	-21	dBm	
Signal Detect-Deasserted	P _D	-35	-	-	dBm	
Data Output Rise, Fall time (20~80%)	T _{r,f}	-	-	0.35	ns	
Differential Output Voltage	V _{DIFF}	0.5	-	1.2	V	
Receiver Loss of Signal Output Voltage-Low	RX_LOS _L	0	-	0.5	V	
Receiver Loss of Signal Output Voltage-High	RX_LOS _H	2.4	-	Vcc	V	

BLOCK DIAGRAM OF TRANSCEIVER

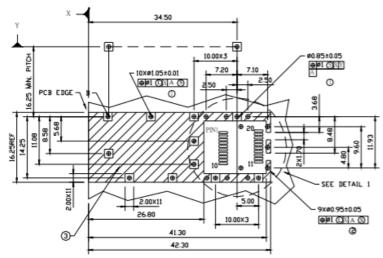
TOP VIEW (Label side)

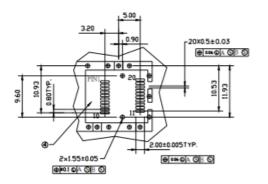

Transmitter Section - The transmitter section consists of a 1550 nm InGaAsP laser in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input LVPECL logic signals into an analog laser driving current.

TX_DISABLE - The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on when TX_DISABLE is low (TTL logic "0").

Receiver Section - The receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.

Receive Loss (RX_LOS) - The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in LVTTL level.

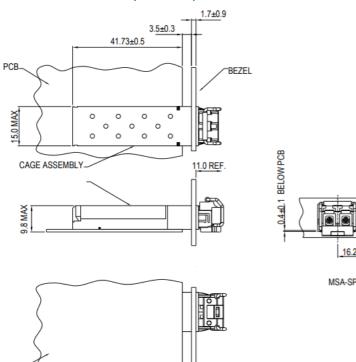

DIMENSIONS

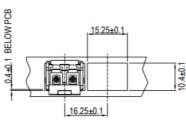


DIMENSIONS ARE IN MILLIMETERS

ALL DIMENSIONS ARE ± 0.2mm UNLESS OTHERWISE SPECIFIED

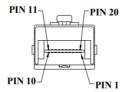
SFP HOST BOARD MECHANICAL LAYOUT




LEGEND

- 1.PADS AND VIAS ARE CHASSIS GROUND
- 2.THROUGH HOLES, PLATING OPTIONAL
- 3.HATCHED AREA DENOTES COMPONENT AND TRACE KEEPOUT(EXCEPT CHASSIS GROUND)
 4.AREA DENOTES COMPONENT KEEPOUT
- (TRACES ALLOWED)

DIMENSIONS ARE IN MILLIMETERS


ASSEMBLY DRAWING (unit: mm)

MSA-SPECIFIED BEZEL

PIN ASSIGNMENT

PIN	SIGNAL NAME	DESCRIPTION	PIN	SIGNAL NAME	DESCRIPTION
1	T _{GND}	Transmit Ground	11	R _{GND}	Receiver Ground
2	TX_FAULT	Transmit Fault	12	RX-	Receive Data Bar, Differential PECL, ac coupled
3	TX_DISABLE	Transmit Disable	13	RX+	Receive Data, Differential PECL, ac coupled
4	MOD_DEF (2)	SDA Serial Data Signal	14	R _{GND}	Receiver Ground
5	MOD_DEF (1)	SCL Serial Clock Signal	15	V_{CCR}	Receiver Power Supply
6	MOD_DEF (0)	TTL Low	16	V _{CCT}	Transmitter Power Supply
7	RATE SELECT	Open Circuit	17	T _{GND}	Transmitter Ground
8	RX_LOS	Receiver Loss of Signal, TTL High, open collector	18	TX+	Transmit Data, Differential PECL, ac coupled
9	R _{GND}	Receiver Ground	19	TX-	Transmit Data Bar, Differential PECL, ac coupled
10	R _{GND}	Receiver Ground	20	T _{GND}	Transmitter Ground

EYE SAFETY MARK

The single-mode transceiver is a class 1 laser product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements, the transceiver shall be operated within the Absolute Maximum Ratings.

Required Mark

Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11

[Caution] All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty.

ADDITIONAL NOTES

- Avoid eye or skin exposure to laser radiations.
- The device is sensitive to electro-static discharge (ESD). The device should be handled with ESD proof tools. To assemble the device on PCB, proper grounding is required to prevent ESD.
- Specifications are subject to change without notice.

Lasermate Group, Inc. 19608 Camino De Rosa Walnut, CA 91789 USA Tel: (909)718-0999 Fax: (909)718-0998

sales@lasermate.com
www.lasermate.com